11 research outputs found

    The protective effect of immunoglobulin in murine tuberculosis is dependent on IgG glycosylation

    No full text
    Antibodies have demonstrated having a protective effect in animal models of tuberculosis (TB). These experiments have considered the specificity of antigen recognition and the different isotypes and subclasses as significant contributors of this effect. However, the carbohydrate chain heterogeneity on the Fc region of IgG (Fc-IgG) can play an important role in modulating the immune response. Patients with TB usually have high titers of specific IgG; however, the carbohydrate associated with Fc-IgG usually lacks galactose. To assess the effect of this abnormal IgG in murine pulmonary TB, we evaluated the specificity of recognition to Mycobacterium tuberculosis antigens in vitro and protective effects in vivo comparing human intravenous immunoglobulin (IVIg) and IVIg treated with an endoglycosidase to remove the glycan residues (EndoS-treated IVIg). Our results showed similar antigen recognition. The study of distribution and kinetics of IVIg in serum and bronchial lavage after intraperitoneal (i.p.) administration in mice showed that IVIg circulates for 21days. Finally, the protective effect of intact and EndoS-treated IVIg administered by i.p was studied in a murine model of progressive TB. IVIg treatment caused reduction in pulmonary bacilli loads, larger granulomas, and less pneumonia, while animals treated with EndoS-treated IVIg were not protected compared with control animals. Thus, IVIg has a protective activity in experimental pulmonary TB, and this effect requires intact Fc oligosaccharides. This work compares conventional fully glycosylated and deglycosylated IVIg determining their mycobacterial antigen recognition by two dimensional Western-blotting, specific mycobacterial antigen recognition by ELISA, kinetics of distribution after intraperitoneal administration, and protective efficiency by evaluating pulmonary bacilli loads and tissue damage after i.p. administration during early infection in a model of progressive pulmonary tuberculosis. The results add to the growing body of information that antibodies have a protective effect at least in animal models of tuberculosis

    p.G12C KRAS mutation prevalence in non-small cell lung cancer: Contribution from interregional variability and population substructures among Hispanics

    No full text
    Background: The KRAS exon 2 p. G12C mutation in patients with lung adenocarcinoma has been increasing in relevance due to the development and effectiveness of new treatment medications. Studies around different populations indicate that regional variability between ethnic groups and ancestries could play an essential role in developing this molecular alteration within lung cancer. Methods: In a prospective and retrospective cohort study on samples from lung adenocarcinoma from 1000 patients from different administrative regions in Colombia were tested for the KRAS p.G12C mutation. An analysis of STR populations markers was conducted to identify substructure contributions to mutation prevalence. Results: Included were 979 patients with a national mean frequency for the KRAS exon 2 p.G12C mutation of 7.97% (95%CI 6.27–9.66%). Variation between regions was also identified with Antioquia reaching a positivity value of 12.7% (95%CI 9.1–16.3%) in contrast to other regions such as Bogota DC (Capital region) with 5.4% (2.7–8.2%) and Bolivar with 2.4% (95%CI 0–7.2%) (p-value = 0.00262). Furthermore, Short tandem repeat population substructures were found for eight markers that strongly yielded association with KRAS exon 2 p.G12C frequency reaching an adjusted R2 of 0.945 and a p-value of < 0.0001. Conclusions: Widespread identification of KRAS exon 2 p.G12C mutations, especially in cases where NGS is not easily achieved is feasible at a population based level that can characterize regional and national patterns of mutation status. Furthermore, this type of mutation prevalence follows a population substructure pattern that can be easily determined by population and ancestral markers such as STR
    corecore